Colloidal stabilization of wines

Jonathan DELTEIL, DIWC
Stabilization of the colloidal matrix of the wine

- What is the colloidal matrix?
 - The colloids
 - The interactions between colloids and other molecules
 - In the wine emulsion
 - The sponge effects of insoluble parts
 - The whole balance is under control of the pH: the lower the best! (without aggressive acidic sensations)

- Practical examples on how to build and how to stabilize the colloidal matrix
There are sensory and technological universal axis to respect, whatever the market price segment

- When they are consumed, all wines must be:
 - Clean and sound (A axis), and
 - With the right longevity and the right consistency of style in the consumer’s glass, until the last sip (B axis), and
 - Without excessive aggressivity i.e. ‘balanced’. Aggressivity as perceived by consumers (not by winemakers!). The concept of aggressivity is variable according to the market (country, women, men, etc.), the price, the variety (C axis)
Clean and sound
Conforming longevity
Without excessive aggressivity

Conforming wines
Wines limit to the target

Non conforming wines
What is the colloidal matrix?
1. The colloids
Colloids from grapes: mostly from pulp cell walls

Example: rhamnogalacturonans
Colloids from yeast: live yeast and inactivated yeast

Example: mannoproteins and globular glucans (that do not impact filtrability)
Example: lignin, cellulose, hemi-cellulose

Colloids from oak
Colloids from lactic acid bacteria
Colloids in interaction between them: more stable
Build a balanced and stabilized colloidal matrix

- Extract the right amount and balance of:
 - Grape colloids
 - Yeast colloids
 - Oak colloids
 - Bacteria colloids

- Stabilize that colloid network: the foundation of the wine emulsion. With several additions when possible: yeast and oak

- Do not impoverish or destabilize the colloidal matrix with useless fining or excessive tannin additions
Botrytis cinerea colloids (ropy beta-glucans): very poor filtrability
Build a balanced and stabilized colloidal matrix (2)

- Do not extract colloids from Botrytis cinerea and different fungi:
- Do not add carboxy-methyl-cellulose in a red wine with unstable color
2. Elements in interaction with the different colloids
Anthocyanins and tannins in interaction with colloids: better stability and better sensory expression, less aggressivity.
3-Mercaptohexanol in interaction with colloids: More stable and better sensory fruity varietal expression
Vanillin in interaction with colloids: better stability and better sensory expression, less aggressivity
Beta-damascenon in interaction with colloids: better stability and better sensory fruity varietal expression
Real fruity aromas come from volatiles aromas in interaction with colloids. Already in the grape, then in the wine.

Volatile aromas not in interaction with colloids are unstable, more sensitive to oxydation and have a more artificial pharmaceutical expression, not really fruity.
Develop the potential quality

Integrate potential aromas and mouthfeel molecules into the balanced and stabilized colloidal matrix

- Extract and produce the right amount and balance of:
 - Grape aromas and mouthfeel molecules
 - Yeast aromas and mouthfeel molecules, including the « revelation » of grape precursors
 - Oak colloids, aromas and tannins
 - Bacteria aromas and colloids, including the « revelation » of grape precursors

- Stabilize the network made of aromas / mouthfeel molecules / colloids. With several additions when possible: yeast and oak

- Do not impoverish or destabilize the aromatic / colloidal matrix with useless fining or excessive tannin additions
Methoxy-pyrazin in interaction with colloids: less aggressive herbaceous aromas, less bitterness
Ethan-thiol in interaction with colloids: less dirty aromas, less metallic and bitter taste
2-amino-aceto-phenon in interaction with colloids: less atypical aging aromas
Isoamyl-acetate in interaction with colloids: less aggressive solvent aromas, more real fruity aroma, less burning after-taste
Limit the risks:
Integrate potential aromas and mouthfeel molecules into the balanced and stabilized colloidal matrix

- Limit the extraction and production of:
 - Grape negative aromas and mouthfeel molecules
 - Yeast negative aromas and mouthfeel molecules
 - Oak negative aromas and tannins
 - Bacteria negative aromas and mouthfeel molecules

- Do not push the aggressive molecules with excessive tannin additions
3. Interactions with the different colloids on insoluble particles: the sponge effect
The sponge effects: key points in the colloidal stabilization

- Insoluble grape particules
- Insoluble yeast parts
- Insoluble oak parts
- Insoluble bacteria parts
Absorb and eliminate negative molecules

- Absorption is due to tension-active and electrostatic phenomena. They are instantaneous.

- Absorb unstable and negative molecules on:
 - Grape insoluble parts (delestage, pumping over, punching down)
 - Yeast insoluble parts: good practices in lees management and several additions of specific inactivated yeast (e.g. Noblesse)
 - Oak insoluble parts
 - Bacteria insoluble parts: good practices in lees management
Absorb and eliminate negative molecules (2)

- Absorb with regular additions when possible: several specific inactivated yeast and oak fragments (staves, blocks, chips) added during aging

- Do not impoverish or destabilize the colloidal matrix with useless protein fining or excessive tannin additions
Unstable anthocyanins and aggressive tannins absorbed on yeast cell structures (e.g. Noblesse) are eliminated with heavy lees =

More stable and more balanced wine

Very recent research (INRA Montpellier) has demonstrated that complete inactivated yeast (e.g. OptiRed, Noblesse) are more efficient than yeast extracts.
Unstable anthocyanins and aggressive tannins absorbed on bacteria cell structures are eliminated with heavy lees = More stable and more balanced wine
Unstable anthocyanins and aggressive tannins absorbed on oak structures are eliminated =

More stable and more balanced wine
Herbaceous and sulfur molecules absorbed on yeast cell structures are eliminated with heavy lees

= More stable and less sulfur/green and less bitter wine
Herbaceous and sulfur molecules absorbed on oak structures are eliminated = More stable and less sulfur/green and less bitter wine
Choices in the use of yeast and oak as sponges
Noblesse (SIY) is the most efficient sponge because of the strain used, especially for molecules very difficult to absorb, like the OTA.

Whole cells Specific Inactivated Yeast are more efficient than yeast extracts.
Important elements to manage the sponge effect of oak

- Long oak seasoning before toasting is important:
 - Alternative water washings and dryings expand and retract regularly the oak pores and allow a better sponge effect in the wine
 - That is important regarding barriques and oak fragments (staves, blocks, chips)
In our plant in Chile, the raw material is stored in carefully assembled wood towers, which allows for a better air circulation, and it is then cured under the sun, the wind, occasional rain and constant sprinkling. It is washed and dried naturally for at least 24 months.

The purpose of this seasoning process, through a scheduled application of water and slow and progressive drying, is for chemical reactions to reach their optimal organoleptic quality and thus provide the desired composition of the wood.
Important elements to manage the sponge effect of oak (2)

- Convection toasting at moderate temperature without oxygen allow a better sponge effect.
- On the contrary, flame toasting burns and obstructs the first millimeters of oak and limit the interesting sponge effect.
- That is important regarding barriques and oak fragments (staves, blocks, chips).
Important elements to manage the sponge effect of oak (3)

- Of course during wine contact the oak will also liberate some aromas and tannins.

- To manage a good balanced sponge effect, non-aggressive aromas and tannins oak is necessary to avoid excess of artificial vanilla and hard tannins tastes.

- That is important regarding barriques and oak fragments (staves, blocks, chips).
Limitations in the use of yeast and oak as sponges
When dead yeast or Specific Inactivated Yeast are saturated with color or other reactive molecules, their sponge efficiency is limited because their reactive sites are already occupied.

Recently added Noblesse SIY

Intense attraction

Weak attraction

Noblesse SIY added last month
When oak surface is saturated with color or other reactive molecules, its sponge efficiency is limited because its reactive sites are already occupied. True for barriques and oak fragments.

Recently added oak staves

Intense attraction

Weak attraction

Oak staves added last month
Do the sponge effect affect the interesting aromas?
No!
After
Are all sponge effects interesting?
No!
During too long maceration (over 15 days), grape cell structures are able to absorb also interesting color and tannins.
What can destabilize the colloid matrix and the wine sensory balance? (1)

- Oxidation:
 - When quinones are forming, they also precipitate with interesting colloids.
 - Oxidized compounds are less integrated in the matrix and are more aggressive sensorily.
What can destabilize the colloid matrix and the wine sensory balance? (2)

- Excess of catechin in white, pinking
- Excess fining with protein (animal or vegetal)
- Useless bentonite treatments
- Too much oak for too long (excess of tannins)
Practical examples of good practices
White wines
What are Good Practices?

- Techniques that are validated at the scientific, experimental and practical levels in wineries
Sauvignon blanc, 7-8 Euro/bottle

1. Cleaning of the juices
2. Fermentation for 1 week
3. Segmentation of the lees for 1 month
4. Segmentation of the lees
5. Segmentation of the lees

Segmentation of the juices according to pressure
Build the colloidal matrix with grape colloids

- Without too much catechins extraction
- Without excess of bentonite: reach protein stability with the minimum dosage
Sauvignon blanc, 7-8 Euro/bottle

1. Destem and crush

2. Maceration at 5°C for 12 hours with maceration enzymes

3. Maximum pressure: 0.4 bar

4. Bentonite in fermentation (40-50 g/hl)

5. Early elimination of heavy lees that can absorb interesting colloids

Segmentation of the lees

Cleaning of the juices

Segmentation of the juices according to pressure
Avoid excessive oxidation

- Without wine contamination with too much iron (from old poorly kept equipment)
- Without wine contamination with too much copper (from old poorly kept bronze equipment or excess of addition of copper sulfate or copper citrate)
Sauvignon blanc. 7-8 Euro/bottle

1. pH adjustment, 2 g/hl SO2 + 4 g/hl ascorbic acid

2. In the press 1 g/hl SO2. Dry ice (CO2, 1 kg/hl)

3. After the press: 1 g/hl SO2 + 1 g/hl ascorbic acid. Cover the juice with CO2 until active fermentation

4. Low acetaldehyde and low SO2 producing yeast strain: Exsence or Opale 2.0. Ferment between 16 and 18°C

5. As soon as fermentation finishes: 3 g/hl SO2 + 4 g/hl ascorbic acid

6. Early elimination of heavy lees that are catalyzers for strong oxidation. Keep wine below 12°C

7. Keep 1 mg/L molecular SO2 all through aging, until bottling. Cover wine with neutral gas. Keep wine below 12°C

8. Bottling with 40 mg/L free SO2 + 5 g/hl ascorbic acid. Storage below 12°C
Build the colloidal matrix with yeast colloids

- Many occurrences of interesting sponge effect
- Without too much aggressive unstable fermentation aromas
- Without excess of buttery aromas and burning mouthfeel
Sauvignon blanc, 7-8 Euro/bottle

1. Add OptimumWhite (SIY) in the press

2. Add a high colloid yeast strain for fermentation: Exsence or Opale 2.0

3. Complex organic yeast nutrition with Fermaid O

4. Early Noblesse addition to stabilize fruit and limit aggressiveness

5. Regular Noblesse additions during aging

6. Addition of Mannolees at bottling (3-5 g/hL)
Avoid excess of unstable sulfur compounds

- Non integrated sulfur compounds are very aggressive on the nose and on the palate
- They are the main cause of Atypical Aging

Reduless good practices: Specific Inactivated Yeast with chelated copper that does not go into solution into the wine
Sauvignon blanc, 7-8 Euro/bottle

1. Low H2S yeast
 Temperature between 16 and 18°C
 Organic nutrients

2. As soon as fermentation finishes: 1 g/hl Reduless

3. Before racking
 #2: 1 g/hl Reduless

4. One week before racking
 #3: 1 g/hl Reduless

5. Before Christmas:
 1 g/hl Reduless

6. One month before bottling:
 1 g/hl Reduless
Avoid excess of unstable herbaceous and sulfur compounds
Stabilize the varietal fruity aromas

- Use the oak sponge effect
- Avoid excess of vanilla aromas and tannins that work against fresh mineral Sauvignon style: avoid short matured oak, avoid non-toasted oak, avoid American oak, avoid small oak fragments (difficult to manage intense extractions versus sponge effect)

Staves good practices to make a fruity mineral Sauvignon
Sauvignon blanc, 7-8 Euro/bottle

1. Add 150 g/hl staves of Ambrosia Complex

2. Transfer the staves

3. Transfer the staves

4. Transfer the «old» staves and add another 100 g/hl of new staves
Avoid pinking

- Coming from excess of uncolored tannins that come with catechins
- Those tannins turn pink when they oxidize

So:

1. Avoid excess of extraction of catechins and tannins
2. Eliminate possible excess of tannins with PVPP after the press and in fermentation
3. Avoid oxidation until the consumer’s glass. Ascorbic acid is Number One anti-pinking agent
Sauvignon blanc, 7-8 Euro/bottle

1. 10 g/hl PVPP in the juice after the press. 20 g/hl PVPP in higher pressure juice

2. PVPP in fermentation (5-10 g/hl)

Maximum pressure: 0.4 bar

As soon as fermentation finishes: 3 g/hl SO₂ + 4 g/hl ascorbic acid

Cleaning of the juices

Bottling with 40 mg/L free SO₂ + 5 g/hl ascorbic acid

Keep 1 mg/L molecular SO₂ all through aging, until bottling. Cover wine with neutral gas

Segmentation of the lees

Bentonite in fermentation (40-50 g/hl)
Build protein stability

- Unstable white wine proteins are grape proteins
- Produced by grape as stress defense proteins
- So they are very stable and only eliminated by bentonite, not by tannins
- Bentonite is far more efficient in the fermenting juice, than in finished wine
- The most accurate test to evaluate protein stability is the « 80°C - 20 minutes » test
Sauvignon blanc, 7-8 Euro/bottle

- **Bentonite in fermentation (40-50 g/hl)**
- **Segmentation of the lees**
- **Cleaning of the juices**
- **Segmentation of the lees**
- **Segmentation of the lees**
- **Check protein stability with 80°C-20 min test. Goal: <2 delta NTU**
Avoid tartrate crystals precipitation in bottle

- If you don’t de-acidify with calcium carbonate, the only potential precipitation is potassium bi-tartrate.
- pH ajustement with tartaric acid or ion exchange resin helps in stabilizing the wine by early elimination of potassium excess.
- In white wines, CMC is efficient when added before bottling.
Microbial stability

- Avoid development of indigenous yeast and bacteria during harvest and pre-fermentation step: hygiene of equipment
- Avoid development of indigenous yeast and bacteria during fermentation: selected yeast direct inoculation as soon as the juice is clarified: see fermentation slide
- Avoid development of indigenous yeast and bacteria during aging: the right SO2 addition and the right molecular level against oxydation are far enough to ensure a good microbial stability: see anti-oxidation slide
Red wines
Build the colloidal matrix with grape colloids, pigments and tannins

Without too much aggressive tannins extraction
Pinot Noir - 8-9 Euro/bottle

1. Destem and crush
2. Maceration at 18-20°C for 10-12 days with maceration enzymes
3. One delestage per day eliminating heavy lees
4. Free run wine and very low pressings (<0.2 bar)
5. Very early elimination of heavy lees that absorb color
6. In Pinot Noir, no micro-oxygenation during MLF
Stabilize the grape colloidal/pigment/tannin matrix with yeast
Pinot Noir - 8-9 Euro/bottle

1. Add a high colloid strain (ICV-D264). Direct inoculation

2. Add a high colloid and sponge SIY: OptiRed

3. Early Noblesse addition to stabilize fruit and limit aggressiveness

4. Regular Noblesse additions during aging

5. Addition of Mannolees at bottling (3-5 g/ml)
Stabilize the grape colloidal/pigment/tannin matrix with lactic acid bacteria
Pinot Noir - 8-9 Euro/bottle

1. Add a high colloid strain (VP41). Direct co-inoculation

2. Some month of wine-bacteria contact for colloidal release and sponge effect
Stabilize the grape colloidal/pigment/tannin matrix with oxygen
Pinot Noir - 8-9 Euro/bottle

1. Twice a day inject 2-3 mg/L pure oxygen

2. In Pinot Noir, no micro-oxygenation to keep the fresh-mineral fruit. Color is mostly already stabilized by low pH and previous actions

Note: In Merlot, 5 mg/L/month DURING MLF, 1 mg/L/month AFTER MLF, for one month
Stabilize the grape colloidal/pigment/tannin matrix with oak
Pinot Noir - 8-9 Euro/bottle

1. Blocks: Odysé Fr 210° 400 g/hl

2. Blocks follow the wine until the end of MLF

3. For MLF, add new staves. Ambrosia Fr. Complex 200 g/hl

4. Eliminate the blocks

5. Keep the MLF staves

6. Add new staves, 2-3 times, from January to April. Each addition: 100 g/hl

7. In March, eliminate old MLF staves
Stabilize the colloidal matrix, prevent oxidation and microbial spoilage with SO2 good practices
Pinot Noir - 8-9 Euro/bottle

1. Adjust pH to 3.3, add 2 g/hl SO2 on the grapes

2. Low acetaldehyde and low SO2 yeast: ICV-D254. Yeast-bacteria co-inoculation for bio-control

3. As soon as malic acid is consumed, adjust pH to 3.35, add 3 g/hl SO2 + 1 g/hl Reducing. Rack next day

4. Keep molecular SO2 at 0.6-0.8 mg/L

5. Bottling with 35 mg/L free SO2. Storage below 12°C
Prevent sulfur-off flavors: they bring dirty aromas and metallic bitterness and push hard aggressive tannins
Pinot Noir - 8-9 Euro/bottle

 Regular oxygenation

2. During devatting: 1 g/hl Reduless

3. As soon as sugar finishes: 1 g/hl Reduless

4. Before MLF: 1 g/hl Reduless

5. After MLF, during sulfiting: 1 g/hl Reduless

6. Before Christmas: 1 g/hl Reduless

7. One month before bottling: 1 g/hl Reduless

8. FML (2)

9. FML (1)
Pre-bottling color and tartrate stabilization to avoid deposit in the bottle... if needed

Until now we talked about general color, fruit and balance stabilization
Pinot Noir - 8-9 Euro/bottle

1. Two month before bottling: laboratory cold test. Pre-filtered wine at -4°C for 4 days

2. If needed: cold stabilization in the winery at -4°C for 7-10 days with 10 g/hl Noblesse, until color and tartrate stabilization. Rack cold. Filter

3. Addition of Mannolees at bottling (3-5 g/hl)