Winemaking adaptations according to berry sensory profiles

Vineyard and winery routine analysis
The most successful wines respect 3 important axes
Clean and sound
Conforming longevity
Without excessive aggressivity

Non conforming wines
Wines limit to the target
Conforming wines
How to adapt the winemaking?

General considerations and trends
Aspect of the berry and tasting the pulp

- Late skin ripening
- Fully ripe

- Color
- Fragility
- Destemming
- Drop of juice
- Separation
- Sweetness
- Acidity
- Herbaceous
- Fruity

- Late skin ripening
- Fully ripe

- High
- Medium
- Low

- More Maceration Enzymes and Oak Fragments
- More OptiRed. Early Noblesse
- Round Mouthfeel Yeast strains
- Soft Extraction
- Co-inoculation, Round Mouthfeel Bacteria

- Lower pH

- Aspect
- Tasting
Tasting the skin

- Late skin ripening
- Fully ripe

<table>
<thead>
<tr>
<th>High</th>
<th>Medium</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Crushing
Crushing
Crushing

Acidity
Acidity
Acidity

Herbaceous
Herbaceous
Herbaceous

Fruity
Fruity
Fruity

Acidity
Acidity
Acidity

Herbaceous
Herbaceous
Herbaceous

Fruity
Fruity
Fruity

Tannic Intensity
Tannic Intensity
Tannic Intensity

Astringency
Astringency
Astringency

Dryness
Dryness
Dryness

Aspect of mixture
Aspect of mixture
Aspect of mixture

- More Oak Fragments
- OptiRed
- Soft Extraction
- Round Mouthfeel Yeast
- Enzymes

5th bite
10th bite
After chewing
Avoid breaking the seeds during maceration and pressing.
How to adapt the winemaking?

A precise example for a >12€ Pinot Noir

The goal is to be able to blend both lots during aging and get a conforming wine for the segment.
Late skin ripening

- Adjust pH < 3.3
- SO₂ 2 g/hl
- Destem
- Crush
- Lallzyme EX-V 3 g/hl
- Enzymes

Fully ripe

- Adjust pH < 3.35
- SO₂ 2 g/hl
- Destem
- Crush
- Lallzyme EX-V 2 g/hl
- Enzymes

Color

Drop of juice

Acidity
Blocks Fr-Ambrosia Complex 400 g/hl

ICV-D21 30 g/hl

GoFerm Protect 30 g/hl

OptiRed 30 g/hl

OptiRed 20 g/hl

Yeast strain

Yeast strain

Yeast strain

Yeast strain

Inactivated yeast for maceration

Inactivated yeast for maceration

Inactivated yeast for maceration

Inactivated yeast for maceration

Oak fragments

Oak fragments

Oak fragments

Oak fragments

Yeast protection

Yeast protection

Yeast protection

Yeast protection

Coinoculate yeast - bacteria

Coinoculate yeast - bacteria

Coinoculate yeast - bacteria

Coinoculate yeast - bacteria

Lactic bacteria strain

Lactic bacteria strain

Lactic bacteria strain

Lactic bacteria strain

Blocks Fr-Ambrosia Complex 300 g/hl

RC-212 30 g/hl

GoFerm Protect 30 g/hl
Délestage 2 times per day

Fermaid O 20 g/hl + Fermaid E 30 g/hl
Macro-oxygenation

Duration of maceration:
- 10-15 days:
 - 2-3 times a day: 1-2 mg/L
 - Drain: 2 per day

- 15-20 days:
 - 2-3 times a day: 2-3 mg/L
 - Drain: 2 per day

Continuous oxygenation:
- 1-2 mg/day

STOP oxygenation

Agitations:
- 2 per day
Absolute key-points with cold pre-fermentation maceration

- Adjust pH
- SO2
- Destem
- Crush
- Enzymes
- Oak fragments
- Yeast strain
- Inactivated yeast for maceration

Coinoculate yeast - bacteria

10-12°

18°
Addition of press wines

Type of pressing

Pneumatic press

<0,4 bar + 1 g/hl Reduless
Rack after 24 hours + 1 g/hl Reduless
Rack after 24 hours + 1 g/hl Reduless
Rack after 24 hours + 1 g/hl Reduless
Blend with racked drained wine

Addition of press wines

Type of pressing

Pneumatic press

<0,4 bar + 1 g/hl Reduless
Rack after 24 hours + 1 g/hl Reduless
Rack after 24 hours + 1 g/hl Reduless
Rack after 24 hours + 1 g/hl Reduless
Blend with racked drained wine
1. Draining: add 1 g/hl Reduless
 Rack after 24 hours
2. Dryness: add 1 g/hl Reduless
 Rack after 24 hours
3. One week later: add 1 g/hl Reduless
 Rack after 24 hours
 Add staves 250 g/hl
4. End of MLF: add 1 g/hl Reduless,
 sulfiting
 Rack after 24 hours
 Add 20 g/hl Noblesse
Thank you for your attention